ALGORITHMS

S ATA
STRUCTURES

Algorithms and Data Structures

© N. Wirth 1985 (Oberon version: August 2004).

Translator's note. This book was translated into Russian in 2009 for specific teaching purposes. Along the way,
Pascal-to-Modula-2-to-Oberon conversion typos were corrected and some changes to programs were made.
The changes (localized in sects. I and 3) were agreed upon with the author in April, 2009.

Their purpose was to facilitate verification of the program examples that are now in perfect running order.
Most notably, section 1.9 now uses the Dijkstra loop introduced in Oberon-07 (see Appendix C).

This book can be downloaded from the author's site:
http://www.inf.ethz.ch/personal/wirth/books/AlgorithmE1/AD2012.pdf

The program examples can be downloaded from the site that promulgates Oberons as a unique foundation to teach
kids from age 11 all the way up through the university-level compiler construction and software architecture courses:

http://www.inr.ac.ru/~info21/ADen/

where the most recently corrected version may be available.

Please send typos and bugs to: info21@inr.ac.ru

Thanks are due to Wojtek Skulski, Nicholas J. Schwartz and — the longest list of typos by far — Helmut Zinn.

—Fyodor Tkachov, Moscow, 2012-02-18
Last update 2012-03-06

N.Wirth. Algorithms and Data Structures. Oberon version

Table of Contents
Preface
Preface To The 1985 Edition
Notation
1 Fundamental Data Structures
1.1 Introduction
1.2 The Concept of Data Type
1.3 Standard Primitive Types
1.3.1 The type INTEGER
1.3.2 The type REAL
1.3.3 The type BOOLEAN
1.3.4 The type CHAR
1.3.5 The type SET
1.4 The Array Structure
1.5 The Record Structure
1.6 Representation of Arrays, Records, and Sets
1.6.1 Representation of Arrays
1.6.2 Representation of Recors
1.6.3 Representation of Sets
1.7 The File (Sequence)
1.7.1 Elementary File Operators
1.7.2 Buffering Sequences
1.7.3 Buffering between Concurrent Processes
1.7.4 Textual Input and Output
1.8 Searching
1.8.1 Linear Search
1.8.2 Binary Search
1.8.3 Table Search
1.9 String Search
1.9.1 Straight String Search
1.9.2 The Knuth-Morris-Pratt String Search
1.9.3 The Boyer-Moore String Search
Exercises
References
2 Sorting
2.1 Introduction
2.2 Sorting Arrays
2.2.1 Sorting by Straight Insertion
2.2.2 Sorting by Straight Selection
2.2.3 Sorting by Straight Exchange
2.3 Advanced Sorting Methods
2.3.1 Insertion Sort by Diminishing Increment
2.3.2 Tree Sort
2.3.3 Partition Sort
2.3.4 Finding the Median
2.3.5 A Comparison of Array Sorting Methods
2.4 Sorting Sequences
2.4.1 Straight Merging

N.Wirth. Algorithms and Data Structures. Oberon version 3

2.4.2 Natural Merging
2.4.3 Balanced Multiway Merging
2.4.4 Polyphase Sort
2.4.5 Distribution of Initial Runs
Exercises
References
3 Recursive Algorithms 99
3.1 Introduction
3.2 When Not to Use Recursion
3.3 Two Examples of Recursive Programs
3.4 Backtracking Algorithms
3.5 The Eight Queens Problem
3.6 The Stable Marriage Problem
3.7 The Optimal Selection Problem
Exercises
References
4 Dynamic Information Structures 129
4.1 Recursive Data Types
4.2 Pointers
4.3 Linear Lists
4.3.1 Basic Operations
4.3.2 Ordered Lists and Reorganizing Lists
4.3.3 An Application: Topological Sorting
4.4 Tree Structures
4.4.1 Basic Concepts and Definitions
4.4.2 Basic Operations on Binary Trees
4.4.3 Tree Search and Insertion
4.4.4 Tree Deletion
4.4.5 Tree Deletion
4.5 Balanced Trees
4.5.1 Balanced Tree Insertion
4.5.2 Balanced Tree Deletion
4.6 Optimal Search Trees
4.7 B-Trees
4.7.1 Multiway B-Trees
4.7.2 Binary B-Trees
4.8 Priority Search Trees
Exercises
References
5 Key Transformations (Hashing) 200
5.1 Introduction
5.2 Choice of a Hash Function
5.3 Collision handling
5.4 Analysis of Key Transformation
Exercises
References
Appendices 207
A. The ASCII Character Set

N.Wirth. Algorithms and Data Structures. Oberon version

B. The Syntax of Oberon
C. The Dijkstra loop
Index

N.Wirth. Algorithms and Data Structures. Oberon version 5

Preface

In recent years the subject of computer programming has been recognized as a discipline whose mastery
is fundamental and crucial to the success of many engineering projects and which is amenable to scientific
treatement and presentation. It has advanced from a craft to an academic discipline. The initial outstanding
contributions toward this development were made by E.W. Dijkstra and C.A.R. Hoare. Dijkstra's Notes
on Structured Programming [1] opened a new view of programming as a scientific subject and
intellectual challenge, and it coined the title for a "revolution” in programming. Hoare's Axiomatic Basis of
Computer Programming [2] showed in a lucid manner that programs are amenable to an exacting
analysis based on mathematical reasoning. Both these papers argue convincingly that many programming
errors can be prevented by making programmers aware of the methods and techniques which they hitherto
applied intuitively and often unconsciously. These papers focused their attention on the aspects of
composition and analysis of programs, or more explicitly, on the structure of algorithms represented by
program texts. Yet, it is abundantly clear that a systematic and scientific approach to program construction
primarily has a bearing in the case of large, complex programs which involve complicated sets of data.
Hence, a methodology of programming is also bound to include all aspects of data structuring. Programs,
after all, are concrete formulations of abstract algorithms based on particular representations and structures
of data. An outstanding contribution to bring order into the bewildering variety of terminology and concepts
on data structures was made by Hoare through his Notes on Data Structuring [3]. It made clear that
decisions about structuring data cannot be made without knowledge of the algorithms applied to the data
and that, vice versa, the structure and choice of algorithms often depend strongly on the structure of the
underlying data. In short, the subjects of program composition and data structures are inseparably
interwined.

Yet, this book starts with a chapter on data structure for two reasons. First, one has an intuitive feeling
that data precede algorithms: you must have some objects before you can perform operations on them.
Second, and this is the more immediate reason, this book assumes that the reader is familiar with the basic
notions of computer programming. Traditionally and sensibly, however, introductory programming courses
concentrate on algorithms operating on relatively simple structures of data. Hence, an introductory chapter
on data structures seems appropriate.

Throughout the book, and particularly in Chap. 1, we follow the theory and terminology expounded by
Hoare and realized in the programming language Pascal [4]. The essence of this theory is that data in the
first instance represent abstractions of real phenomena and are preferably formulated as abstract structures
not necessarily realized in common programming languages. In the process of program construction the
data representation is gradually refined in step with the refinement of the algorithm to comply more and
more with the constraints imposed by an available programming system [5]. We therefore postulate a
number of basic building principles of data structures, called the fundamental structures. It is most important
that they are constructs that are known to be quite easily implementable on actual computers, for only in
this case can they be considered the true elements of an actual data representation, as the molecules
emerging from the final step of refinements of the data description. They are the record, the array (with
fixed size), and the set. Not surprisingly, these basic building principles correspond to mathematical notions
that are fundamental as well.

A cornerstone of this theory of data structures is the distinction between fundamental and "advanced"
structures. The former are the molecules themselves built out of atoms that are the components of the
latter. Variables of a fundamental structure change only their value, but never their structure and never the
set of values they can assume. As a consequence, the size of the store they occupy remains constant.

N.Wirth. Algorithms and Data Structures. Oberon version 6

"Advanced" structures, however, are characterized by their change of value and structure during the
execution of a program. More sophisticated techniques are therefore needed for their implementation. The
sequence appears as a hybrid in this classification. It certainly varies its length; but that change in structure
is of a ftrivial nature. Since the sequence plays a truly fundamental role in practically all computer systems,
its treatment is included in Chap. 1.

The second chapter treats sorting algorithms. It displays a variety of different methods, all serving the
same purpose. Mathematical analysis of some of these algorithms shows the advantages and disadvantages
of the methods, and it makes the programmer aware of the importance of analysis in the choice of good
solutions for a given problem. The partitioning into methods for sorting arrays and methods for sorting files
(often called internal and external sorting) exhibits the crucial influence of data representation on the choice
of applicable algorithms and on their complexity. The space allocated to sorting would not be so large were
it not for the fact that sorting constitutes an ideal vehicle for illustrating so many principles of programming
and situations occurring in most other applications. It often seems that one could compose an entire
programming course by choosing examples from sorting only.

Another topic that is usually omitted in introductory programming courses but one that plays an
important role in the conception of many algorithmic solutions is recursion. Therefore, the third chapter is
devoted to recursive algorithms. Recursion is shown to be a generalization of repetition (iteration), and as
such it is an important and powerful concept in programming. In many programming tutorials, it is
unfortunately exemplified by cases in which simple iteration would suffice. Instead, Chap. 3 concentrates
on several examples of problems in which recursion allows for a most natural formulation of a solution,
whereas use of iteration would lead to obscure and cumbersome programs. The class of backtracking
algorithms emerges as an ideal application of recursion, but the most obvious candidates for the use of
recursion are algorithms operating on data whose structure is defined recursively. These cases are treated
in the last two chapters, for which the third chapter provides a welcome background.

Chapter 4 deals with dynamic data structures, i.e., with data that change their structure during the
execution of the program. It is shown that the recursive data structures are an important subclass of the
dynamic structures commonly used. Although a recursive definition is both natural and possible in these
cases, it is usually not used in practice. Instead, the mechanism used in its implementation is made evident
to the programmer by forcing him to use explicit reference or pointer variables. This book follows this
technique and reflects the present state of the art: Chapter 4 is devoted to programming with pointers, to
lists, trees and to examples involving even more complicated meshes of data. It presents what is often (and
somewhat inappropriately) called list processing. A fair amount of space is devoted to tree organizations,
and in particular to search trees. The chapter ends with a presentation of scatter tables, also called "hash”
codes, which are often preferred to search trees. This provides the possibility of comparing two
fundamentally different techniques for a frequently encountered application.

Programming is a constructive activity. How can a constructive, inventive activity be taught? One
method is to crystallize elementary composition priciples out many cases and exhibit them in a systematic
manner. But programming is a field of vast variety often involving complex intellectual activities. The belief
that it could ever be condensed into a sort of pure recipe teaching is mistaken. What remains in our arsenal
of teaching methods is the careful selection and presentation of master examples. Naturally, we should not
believe that every person is capable of gaining equally much from the study of examples. It is the
characteristic of this approach that much is left to the student, to his diligence and intuition. This is
particularly true of the relatively involved and long example programs. Their inclusion in this book is not
accidental. Longer programs are the prevalent case in practice, and they are much more suitable for
exhibiting that elusive but essential ingredient called style and orderly structure. They are also meant to
serve as exercises in the art of program reading, which too often is neglected in favor of program writing.
This is a primary motivation behind the inclusion of larger programs as examples in their entirety. The

N.Wirth. Algorithms and Data Structures. Oberon version 7

reader is led through a gradual development of the program; he is given various snapshots in the evolution
of a program, whereby this development becomes manifest as a stepwise refinement of the details. |
consider it essential that programs are shown in final form with sufficient attention to details, for in
programming, the devil hides in the details. Although the mere presentation of an algorithm's principle and
its mathematical analysis may be stimulating and challenging to the academic mind, it seems dishonest to the
engineering practitioner. I have therefore strictly adhered to the rule of presenting the final programs in a
language in which they can actually be run on a computer.

Of course, this raises the problem of finding a form which at the same time is both machine executable and
sufficiently machine independent to be included in such a text. In this respect, neither widely used languages
nor abstract notations proved to be adequate. The language Pascal provides an appropriate compromise; it
had been developed with exactly this aim in mind, and it is therefore used throughout this book. The
programs can easily be understood by programmers who are familiar with some other high-level language,
such as ALGOL 60 or PL/1, because it is easy to understand the Pascal notation while proceeding through
the text. However, this not to say that some proparation would not be beneficial. The book Systematic
Programming 6] provides an ideal background because it is also based on the Pascal notation. The
present book was, however, not intended as a manual on the language Pascal; there exist more appropriate
texts for this purpose [7].

This book is a condensation and at the same time an elaboration of several courses on programming
taught at the Federal Institute of Technology (ETH) at Zirich. I owe many ideas and views expressed in
this book to discussions with my collaborators at ETH. In particular, I wish to thank Mr. H. Sandmayr for
his careful reading of the manuscript, and Miss Heidi Theiler and my wife for their care and patience in
typing the text. I should also like to mention the stimulating influence provided by meetings of the Working
Groups 2.1 and 2.3 of IFIP, and particularly the many memorable arguments I had on these occasions with
E. W. Dijkstra and C.A.R. Hoare. Last but not least, ETH generously provided the environment and the
computing facilities without which the preparation of this text would have been impossible.

Ziarich, Aug. 1975 N. Wirth

[1] E.W. Dijkstra, in: O.-J. Dahl, E'W. Dijkstra, C.A.R. Hoare. Structured Programming. F. Genuys,
Ed., New York, Academic Press, 1972, pp. 1-82.

C.A.R. Hoare. Comm. ACM, 12, No. 10 (1969), 576-83.

C.A.R. Hoare, in Structured Programming [1], cc. 83-174.

4] N. Wirth. The Programming Language Pascal. Acta Informatica, 1, No. 1 (1971), 35-63.

5] N. Wirth. Program Development by Stepwise Refinement. Comm. ACM, 14, No. 4 (1971), 221-27.
6] N. Wirth. Systematic Programming. Englewood Cliffs, N.J. Prentice-Hall, Inc., 1973.

7] K. Jensen and N. Wirth. PASCAL-User Manual and Report. Berlin, Heidelberg, New York:
Springer-Verlag, 1974.

2
3

(2]
[3]
[4]
[3]
[6]
[7]

N.Wirth. Algorithms and Data Structures. Oberon version 8

Preface To The 1985 Edition

This new Edition incorporates many revisions of details and several changes of more significant nature.
They were all motivated by experiences made in the ten years since the first Edition appeared. Most of the
contents and the style of the text, however, have been retained. We briefly summarize the major alterations.
The major change which pervades the entire text concerns the programming language used to express the
algorithms. Pascal has been replaced by Modula-2. Although this change is of no fundamental influence to
the presentation of the algorithms, the choice is justified by the simpler and more elegant syntactic
structures of Modula-2, which often lead to a more lucid representation of an algorithm's structure. Apart
from this, it appeared advisable to use a notation that is rapidly gaining acceptance by a wide community,
because it is well-suited for the development of large programming systems. Nevertheless, the fact that
Pascal is Modula's ancestor is very evident and eases the task of a transition. The syntax of Modula is
summarized in the Appendix for easy reference.

As a direct consequence of this change of programming language, Sect. 1.11 on the sequential file
structure has been rewritten. Modula-2 does not offer a built-in file type. The revised Sect. 1.11 presents
the concept of a sequence as a data structure in a more general manner, and it introduces a set of program
modules that incorporate the sequence concept in Modula-2 specifically.

The last part of Chapter 1 is new. It is dedicated to the subject of searching and, starting out with linear
and binary search, leads to some recently invented fast string searching algorithms. In this section in
particular we use assertions and loop invariants to demonstrate the correctness of the presented algorithms.

A new section on priority search trees rounds off the chapter on dynamic data structures. Also this
species of trees was unknown when the first Edition appeared. They allow an economical representation
and a fast search of point sets in a plane.

The entire fifth chapter of the first Edition has been omitted. It was felt that the subject of compiler
construction was somewhat isolated from the preceding chapters and would rather merit a more extensive
treatment in its own volume.

Finally, the appearance of the new Edition reflects a development that has profoundly influenced
publications in the last ten years: the use of computers and sophisticated algorithms to prepare and
automatically typeset documents. This book was edited and laid out by the author with the aid of a Lilith
computer and its document editor Lara. Without these tools, not only would the book become more
costly, but it would certainly not be finished yet.

Palo Alto, March 1985 N. Wirth

N.Wirth. Algorithms and Data Structures. Oberon version 9

Notation

The following notations, adopted from publications of E.W. Dijkstra, are used in this book.

In logical expressions, the character & denotes conjunction and is pronounced as and. The character ~
denotes negation and is pronounced as not. Boldface A and E are used to denote the universal and
existential quantifiers. In the following formulas, the left part is the notation used and defined here in terms
of the right part. Note that the left parts avoid the use of the symbol "...", which appeals to the readers
intuition.

Aiim<i<n: P Pm &Pm+1 & ... &Ppoq

The P; are predicates, and the formula asserts that for all indices i ranging from a given value m to, but
excluding a value n P; holds.

Ei: m<i<n:P Pm or Pm41 Or ... or P
The P; are predicates, and the formula asserts that for some indices i ranging from a given value m to, but
excluding a value n P; holds.

Sim<i<n:X = Xm +Xm+1 + ... +Xq-1

MINi: m<i<n:x = mnmum(Xm , ... , Xp-1)

MAXi: m<i<n:x = maximum(Xq, , ... , Xn-1)

